World News
A community for discussing events around the World
Rules:
-
Rule 1: posts have the following requirements:
- Post news articles only
- Video links are NOT articles and will be removed.
- Title must match the article headline
- Not United States Internal News
- Recent (Past 30 Days)
- Screenshots/links to other social media sites (Twitter/X/Facebook/Youtube/reddit, etc.) are explicitly forbidden, as are link shorteners.
-
Rule 2: Do not copy the entire article into your post. The key points in 1-2 paragraphs is allowed (even encouraged!), but large segments of articles posted in the body will result in the post being removed. If you have to stop and think "Is this fair use?", it probably isn't. Archive links, especially the ones created on link submission, are absolutely allowed but those that avoid paywalls are not.
-
Rule 3: Opinions articles, or Articles based on misinformation/propaganda may be removed. Sources that have a Low or Very Low factual reporting rating or MBFC Credibility Rating may be removed.
-
Rule 4: Posts or comments that are homophobic, transphobic, racist, sexist, anti-religious, or ableist will be removed. “Ironic” prejudice is just prejudiced.
-
Posts and comments must abide by the lemmy.world terms of service UPDATED AS OF 10/19
-
Rule 5: Keep it civil. It's OK to say the subject of an article is behaving like a (pejorative, pejorative). It's NOT OK to say another USER is (pejorative). Strong language is fine, just not directed at other members. Engage in good-faith and with respect! This includes accusing another user of being a bot or paid actor. Trolling is uncivil and is grounds for removal and/or a community ban.
Similarly, if you see posts along these lines, do not engage. Report them, block them, and live a happier life than they do. We see too many slapfights that boil down to "Mom! He's bugging me!" and "I'm not touching you!" Going forward, slapfights will result in removed comments and temp bans to cool off.
-
Rule 6: Memes, spam, other low effort posting, reposts, misinformation, advocating violence, off-topic, trolling, offensive, regarding the moderators or meta in content may be removed at any time.
-
Rule 7: We didn't USED to need a rule about how many posts one could make in a day, then someone posted NINETEEN articles in a single day. Not comments, FULL ARTICLES. If you're posting more than say, 10 or so, consider going outside and touching grass. We reserve the right to limit over-posting so a single user does not dominate the front page.
We ask that the users report any comment or post that violate the rules, to use critical thinking when reading, posting or commenting. Users that post off-topic spam, advocate violence, have multiple comments or posts removed, weaponize reports or violate the code of conduct will be banned.
All posts and comments will be reviewed on a case-by-case basis. This means that some content that violates the rules may be allowed, while other content that does not violate the rules may be removed. The moderators retain the right to remove any content and ban users.
Lemmy World Partners
News !news@lemmy.world
Politics !politics@lemmy.world
World Politics !globalpolitics@lemmy.world
Recommendations
For Firefox users, there is media bias / propaganda / fact check plugin.
https://addons.mozilla.org/en-US/firefox/addon/media-bias-fact-check/
- Consider including the article’s mediabiasfactcheck.com/ link
view the rest of the comments
how would you even start with the cooling? that sounds like a nightmare
... That's a very good point actually. Vacuums are rather insulating. Without convection cooling from a fluid, you're relying on radiative heat transfer for cooling, and that's piss poor.
Lots of radiators.
No wind...
That's why it's a nuclear plant instead of a wind turbine /jk
Lithoradiators
I suspect you would dump the heat into the Moon itself. You wouldn't need that much power up there.
Only operate when your side of the moon is dark or even near the poles where it can be coldest? I'm not sure what the plan is for daytime operations since it apparently gets really hot.
No atmosphere up there to insulate so the temperatures fluctuate to extremes
No atmosphere means very little thermal radiation is pulled from radiators.
I imagine the best bet would be to drill into the surface of the moon and sink your radiators into the ground, fill the gaps with a material that transfers heat well.
Easiest version of that would probably be to lay the radiators on or just below the surface and bury them in a regolith concrete mixture of some sort. Probably not as efficient as drilling straight in, but way less complicated I imagine.
I read this in chief O'Brien's voice
Unfortunately you can't really turn off a nuclear reactor.
Russians: "Sure you can, it's just this red button right here..."
If you have enough ice, you evaporate it.
If not, heat pump/ sink into basalt probably.
I suppose the regolith itself could be used as a heat sink. I don't know what its thermal properties are like?
But yeah, I imagine heat dissipation is a limiting factor. Everything I've read suggests the 1st gen reactors will put out something on the order of 10s of kilowatts, so rather modest by nuclear standards but still plenty for a nascent Moon base I imagine?
Heat pipes running to radiators in vacuum is how you do it in space. It's efficient and scaleable, though it hasn't ever been done on an industrial scale. Definitely doable though. Considering the temperature on the moon is a balmy -270°C
It's extremely difficult to cool things in space, as everything is basically insulated in a vacuum.
Yes. You need to use radiation, via radiators. It's a shame I'm getting downvoted on this, because I really do know what I'm talking about on this one. Ammonia in heat pipes wicks the heat away from the thing you want to be cold, towards the radiator, which is usually just a dumb coil, but could be enhanced with a bimetallic thermally decoupled louver if you want to keep it cool in sunlight. Or bury it, since we're on the moon. From an engineering perspective it's not that difficult to do, as the variables which affect it are well known and don't change that much. It is for sure slower than combined conductive/convective cooling, but it's a known quantity, so you can plan quite effectively.
It's definitely possible, however nukes have like 30-40% efficiency so to cool even a tiny 10 kW reactor you'd need twice the capacity the ISS currently has (14kW) for just the reactor without any safety margins.
you could use space that shit is called as balls
The temp is low but it is a vacuum. Vacuums are bad at dissipating heat. Think of the vacuum walled drinking vessels. They are so efficient at keeping beverages hot/cool because the vacuum insulates the majority of the surface area that heat can move across.
Likewise a cooling tank of water (typical nuclear reactor design) itself surrounded by vacuum, will not cool efficiently at all. Presumably they'd have to use piping to circulate the water over a large surface area of some other medium like the moon rock itself.
I've got it. Since we're worried about rising sea levels on earth, we can just pipe the excess water to the moon and flood the moon's surface with water and use that for cooling.
Hello, Nobel prize foundation?
Yes, this man right here!
They're also very good at not stopping infrared radiation.
The IR band gap is high enough that you'd need really efficient heat pumps to keep things radiating well. Otherwise the heat pumps generate more heat than you can radiate.
Dissipating heat in space is actually one of the major issues that comes up in designs for space applications. It's... not easy.
Cooling is the process of offloading heat from one atom to another. In space and the moon, there's very little....anything. You can't transfer heat onto nothing - so an "air cooled" heat vent doesn't work. Another user suggested they use the moon itself or moon dust as a heat sink, and you could do that in theory.
https://en.m.wikipedia.org/wiki/Thermal_radiation
Since we're being pedants, that's moving heat through nothing, not transferring it to nothing.
Not that it's a viable means of heat removal for a reactor.