this post was submitted on 15 Jul 2023
431 points (93.9% liked)

Technology

59080 readers
4184 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
 

New research puts age of universe at 26.7 billion years, nearly twice as old as previously believed::Our universe could be twice as old as current estimates, according to a new study that challenges the dominant cosmological model and sheds new light on the so-called "impossible early galaxy problem."

you are viewing a single comment's thread
view the rest of the comments
[–] Blamemeta@lemmy.world 0 points 1 year ago (2 children)

Isn't dark matter just matter we can't percieve? Rogue asteriods and the like? I admit its been a minute since I studied this stuff, but dark matter isn't very special.

[–] Foggyfroggy@lemmy.world 5 points 1 year ago

It’s been a minute, but the universe is expanding and the speed of the expansion depends on the total gravity. When we calculate the amount of mass it would take to make that much gravity, it’s way more than what we actually see out in the universe. It’s really a cheeky way of saying our current model makes tons of good predictions so we trust that something is out there, but in reality we don’t know its nature and can’t detect or measure it directly.

[–] jalda@sopuli.xyz 3 points 1 year ago

Things like asteroids, galactic dust and the like are already accounted for in the baryonic (ie ordinary) matter. We can estimate it for example measuring the absorption of different wavelengths of light, or extrapolating the local abundance of asteroids. There are theories like the MACHO that propose that we are missing some, but in general it is understood they can only account for a tiny fraction of the missing mass.

The predominant hypothesis is that dark matter is composed by some unidentified particles, that have the same thermodynamic properties as usual matter (basically that their energy is proportional to the volume), but that don't interact (or interact very weakly) with normal matter.