this post was submitted on 31 Aug 2023
570 points (98.0% liked)

Technology

58164 readers
4584 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
 

I'm rather curious to see how the EU's privacy laws are going to handle this.

(Original article is from Fortune, but Yahoo Finance doesn't have a paywall)

you are viewing a single comment's thread
view the rest of the comments
[–] Jerkface@lemmy.world 6 points 1 year ago

Sort of. We know 'how it works' to the extent that it was engineered with a particular method and purpose. The problem is that it's incredibly difficult to gain any insight into what's 'inside' the network once the data has been propagated through it.

Visualizing a neural network can look a little bit like a constellation of stars. Each star is a node and is connected to other nodes. When given an input, each node makes a small calculation and passes the result to the other nodes they are connected to. The calculation is modified by the connection (by what is called a weight), and the results of the calculations change the weights of the connections. That's what's in the black box.

The constellations in an LLM are very large (the first L in LLM). Each 'layer' may have hundreds of nodes, each of which is connected to every node of the next layer. If there are 100 nodes in two adjacent layers, that makes 10,000 connections. There are many layers in an LLM.

Notice that I didn't mention anything about the nodes or the connections storing any data. That's because they don't, at least in the sense that we're used to thinking about it. There doesn't exist a string of text that says 'Bill Burr's SSN is ###-##-####'. It's just the nodes that do the calculations, and the weights of their connections.

So by now you can probably see why it's so tricky to determine what's 'inside' a neural network, because really it's a set of operations instead of a set of data. The most reliable way to see what it does (so far) is to put something in and see what comes out.