this post was submitted on 20 Jan 2024
47 points (98.0% liked)

Canada

7204 readers
371 users here now

What's going on Canada?



Communities


🍁 Meta


🗺️ Provinces / Territories


🏙️ Cities / Local Communities


🏒 SportsHockey

Football (NFL)

  • List of All Teams: unknown

Football (CFL)

  • List of All Teams: unknown

Baseball

Basketball

Soccer


💻 Universities


💵 Finance / Shopping


🗣️ Politics


🍁 Social and Culture


Rules

Reminder that the rules for lemmy.ca also apply here. See the sidebar on the homepage:

https://lemmy.ca/


founded 3 years ago
MODERATORS
all 17 comments
sorted by: hot top controversial new old
[–] FunderPants@lemmy.ca 50 points 10 months ago (1 children)

This transition had been known to be nessecary for decades, and known to Alberta that Trudeau would act on it since Trudeau won government in 2015. Alberta squandered its time and money and wants us to beleive its the victim now. Poor persecuted Alberta.

[–] dgmib@lemmy.world 10 points 10 months ago* (last edited 10 months ago)

This is the same premier that declared a moratorium on new grid scale solar and wind farms. Alberta has some of the most optimal conditions in Canada for solar power and we can’t build it, because….

[–] bionicjoey@lemmy.ca 17 points 10 months ago (2 children)

This is why we need to stop the fear-mongering about nuclear power

[–] nyan@lemmy.cafe 5 points 10 months ago* (last edited 10 months ago) (2 children)

While the CANDU heavy-water plants that power half of Ontario have proven themselves safe, they're slow and expensive to build (and not cheap to operate, either). If Alberta started building one right now, it would be years before they would see any benefit. Hard to make that work in the current political climate.

Other plant types are, by my understanding, less safe, less proven, or continually five years in the future.

[–] MisterD@lemmy.ca 6 points 10 months ago

Politicians are punished if proactive and praised (and re-elected) if reactive.

Look at the Carbon tax now. When the equator is a no-mans-land and tornadoes are the norm, Carbon tax will seem like a "why didn't you do it back then" idea.

[–] Peppycito@sh.itjust.works 1 points 10 months ago (1 children)

We traded nuclear science R&D for a construction worker jobs program a long time ago. Way easier for politicians to sell constant refurbishment of our grandparents reactors than some smarty-pants physicists looking at a computer.

[–] Sir_Osis_of_Liver@kbin.social 1 points 10 months ago (1 children)

That's not true. The Westinghouse AP1000 got type approval in 2011. The EPR got type approval in the early 2000s. Both are GEN III+ reactors, which are semi-modular and have reduced length and number of pipe-runs and number of pumps, valves and so on. They've got 60 year design lives compared to 30 years for the typical Gen II design. It didn't stop them from being more expensive to build than the prior reactor types.

The EPR2 is currently undergoing certification. It would be a brave utility to roll the dice on a new, untested version of the EPR after the fiascos at Flamanville, Olkiluoto, Taishan and Hinckley.

SMRs to date have been one failure after another. NuScale just cancelled the Idaho project in spite of receiving $4B in government subsidies. X-Energy cancelled plans to go public and laid off 100 staff. Oklo’s Aurora reactor license application was so poor that it was rejected almost immediately by the NRC. Rolls Royce has announced that their £500B SMR program will run out of cash by the end of the year, and so on.

New cost estimates from TerraPower and XEnergy as part of the Department of Energy’s Advanced Reactor Deployment Program are likely to reveal substantially higher cost estimates for the deployment of those new reactor technologies. This would confirm other independent studies on SMR economics.

[–] Peppycito@sh.itjust.works 1 points 10 months ago (1 children)

How many of those are under construction right now as opposed to existing reactors being refurbished?

[–] Sir_Osis_of_Liver@kbin.social 1 points 10 months ago (2 children)

Four AP1000s have been built in China. The Chinese also have an agreement with Westinghouse to further develop the design, so more are under construction, but those are heavily modified Chinese variants.

Four AP1000s were under construction in the US, two at the Vogtle generating station in Georgia, and two at the V.C Summer plant in South Carolina. The V.C. Summer reactors were cancelled during construction when the initial estimate was revised from $9B to $23B. The Unit 3 at Vogtle has finally completed commissioning and is online, and unit 4 should be completed this year. Costs have exploded from $14B estimate at the beginning of construction to the vicinity of $35B.

There are another 5 reactors planned for Turkey and Poland. I'm not sure where they're at currently.

For the EPR, the first unit to start construction was Olkiluoto-3 in Finland in 2005. It was supposed to complete commissioning in 2010, but finally was completed in 2022 and entered service in 2023. Costs went from €3.3B to €11B

Taishan 1 & 2 started construction in 2009 and were supposed to be completed in 2013. Taishan-1 entered service in 2018, and Taishan-2 in 2019. Though the third EPR project to start construction, these were the first in service. The final $7.5B cost was roughly double the estimate. Since then, unit 1 was offline for a year due to issues with the fueling. There have been some other reliability issues, some causing brief downtime.

Flamanville-3 started construction in 2007, was supposed to be commissioned in 2012, but is currently projected to be in service late this year. Costs bloated from €3B to a projected €20B at completion.

Hinkley Point C started construction of two EPRs in 2017, though a lot of site prep work started well prior to that. It was supposed to be online in 2023. Currently they're projecting 2028. Costs have gone from the initial £16B to a projected £33B.

The average age of a French reactor is 37 years. They get an initial license for thirty years then apply for ten year extensions. They have 56 operational reactors now, and have an ongoing 'grand carénage' refurbishment for mostly the larger units. The estimate for that was in the vicinity of €55B, though has shifted some what. The smaller, older units are being taken out of service.

More often than not, older reactors in the US are taken out of service rather than refurbished due to the economics. Globally there are 407-413 (definitions vary) operational reactors, down from 438 at the peak in 2002.

[–] Peppycito@sh.itjust.works 1 points 10 months ago

That is all great. That doesn't refute my point about the Canadian nuclear energy industry being a jobs program.

[–] Peppycito@sh.itjust.works 1 points 10 months ago* (last edited 10 months ago)

A topical article illustrating my point.

Ontario is about to decide whether to overhaul Canada’s oldest nuclear power plant. Does it deserve a second life?

A closely related problem is what to do with the station’s 2,500 employees. Mr. Attieh said keeping so many people on payroll at an idle plant for a decade or longer could be difficult to justify. But, he added, “They need to keep the staff to maintain the station in operating conditions, and they do not want to lose expertise in running the station.”

Fits my definition of a jobs program.

[–] corsicanguppy@lemmy.ca 2 points 10 months ago

The new plants are smaller, safer and quicker to build, aren't they?

[–] sbv@sh.itjust.works 13 points 10 months ago (1 children)

The energy shortage was partially caused by natural gas plants failing in cold weather. I hope the new natural gas plant they have coming online this year is more resilient to find weather.

[–] Sir_Osis_of_Liver@kbin.social 3 points 10 months ago* (last edited 10 months ago) (1 children)

It's been reported alternatively as "undergoing scheduled maintenance", "undergoing unscheduled maintenance", or "system failure due to cold". Scheduled maintenance is BS, no one schedules that for peak seasonal demand times. Who knows about the other two.

With the market setup in Alberta, those plants going down caused a spike in electricity spot prices. Generators can make a windfall profit in tight supply times. Residences without contracts will see their price go to something like 32¢/kWh. With the way the Alberta market rules are set up now, there are no penalties for generators voluntarily shutting down in order to bump prices. It's basically the same market manipulation that Enron was pulling twenty years ago.

Alberta has the highest provincial electricity costs, on average 25¢/kWh, Saskatchewan is second at 20¢/kWh, with the others trailing off from there. Manitoba is something like 10.8¢/kWh and Quebec is cheapest at 8¢/kWh. (typical costs for first 1000kWh including distribution and other fees)

[–] mPony@kbin.social 7 points 10 months ago

they used the phrase "freeze in the dark" again, eh? Man they know how to hold on to a grudge for well over a generation.

https://en.wikipedia.org/wiki/National_Energy_Program#Legacy_and_Western_alienation

[–] autotldr@lemmings.world 1 points 10 months ago

This is the best summary I could come up with:


In white text on black boards, messages that were both visually and rhetorically stark flanked Premier Danielle Smith last fall as she launched a big advertising campaign against Ottawa's clean electricity regulations.

Cabinet ministers played up the fact wind and solar power didn't come through in last weekend's deep freeze, and when Smith returns from vacation next week she might take some more whacks at that UCP whipping post.

Inflammatory rhetoric on either the pro or con side of net zero can fuel headlines and stoke political bases, but it won't power Alberta's energy-hungry homes and cities, now or in the future.

The province had already begun work on a potential redesign of its regulated private market system when the cold snap rattled its grid more than similarly shivering Saskatchewan and British Columbia, which could both export some extra juice to Alberta.

He noted that the direct risk of this happening will be greatly diminished later this year when several massive gas plants come online, largely to replace the soon-to-be-eliminated (and much dirtier) coal-powered generators.

That could come with help from the new natural gas plants, but also the wind turbines and solar panels that produce in much greater abundance during longer days and gustier warm months.


The original article contains 1,112 words, the summary contains 206 words. Saved 81%. I'm a bot and I'm open source!