this post was submitted on 27 May 2024
48 points (91.4% liked)
Linux
48332 readers
749 users here now
From Wikipedia, the free encyclopedia
Linux is a family of open source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991 by Linus Torvalds. Linux is typically packaged in a Linux distribution (or distro for short).
Distributions include the Linux kernel and supporting system software and libraries, many of which are provided by the GNU Project. Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses the name GNU/Linux to emphasize the importance of GNU software, causing some controversy.
Rules
- Posts must be relevant to operating systems running the Linux kernel. GNU/Linux or otherwise.
- No misinformation
- No NSFW content
- No hate speech, bigotry, etc
Related Communities
Community icon by Alpár-Etele Méder, licensed under CC BY 3.0
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
That's because most of these benefits are not a result of a distro being immutable.
You should define what "being immutable" means (according to you).
Besides, the questioner asked what the benefits of an immutable distro are. The only three mature immutable distros possess all of these qualities. And even if some of these qualities may be found on other distros that are not qualified as immutable. Fact of the matter is that the immutable variants of these features are far and wide superior over their counterparts found on traditional distros.
I guess I'd define it as a distro where the base system is read-only and changes or updates to it are done by replacing it atomically.
How exactly? Just saying it doesn't make it true. Except for atomic updates (which are basically the main point of these distros, and why they're also called "atomic"), what can they do that you can't on a normal distro?
Thank you for your reply!
Aight. I got no qualms with that definition for an immutable distro. However, small nitpick, the term "base system" can be very murky at times. And perhaps I would rephrase the part addressing changes/updates to "changes or updates to it are intended to be applied atomically".
Btw, I think this conversation is primarily on semantics and some assumptions we're making related to that. So, I agree with you that (strictly speaking) immutability is only part of the puzzle (perhaps I might even refer to it as an enabler) for acquiring a lot of the aforementioned benefits to the degree by which it's attained. So, the precise implementation of immutability is at least as important.
For example, openSUSE Aeon/Kalpa, as much as I like them, have not been able to deliver most of these benefits beyond what traditional distros are capable of. Despite these distros being immutable*. However, they've recognized their faults and intend to move towards an image-based solution in order to improve. Similarly, Vanilla OS has recognized that their first vision of ABRoot wasn't fit and thus overhauled it to be more in line with Fedora Atomic. We should continue to regard their initial visions as immutable distros despite 'their failings', but should also recognize that their failures aren't representative of what immutable distros are or can be.
Alright, let's start:
(Note that the immutable distros will only be represented by Fedora Atomic, GuixSD and NixOS. The others are either too niche or immature)
There's no need to go over the "consequences" as they're (as the name implies) consequences of what has mentioned earlier. Hence, as their causes are better than the one found on traditional distros, so are the consequences better than how they're found on traditional distros.
Finally, minimizing bit rot, configuration drift and hidden/unknown states are direct consequences of atomicity and declarative system management. Hence, immutable distros perform better at this compared to traditional distros.
This was my issue with your original comment - I'm aware most of the work on features like these is based on immutable distros, but just being immutable doesn't mean it will have those features.
When it comes to reproducibility and declarative system management, I think you're right that they're only available in immutable distros.
The security benefit of a read-only filesystem isn't very significant IMO, and for some immutable distros, interesting parts (to attackers, like /etc for example) are mutable anyway.
And I don't use any snapshot solution currently, but don't most of them only store the parts that change between snapshots? According to the Arch Wiki, Snapper's "default settings will keep 10 hourly, 10 daily, 10 monthly and 10 yearly snapshots". This doesn't seem like much of an advantage for immutable distros, really.
I disagree with this though. "Better" is very subjective - I for one consider being able to have an up to date system that can have parts of it updated without rebooting to be much nicer than using something like rpm-ostree, even if it is safer to use in theory (I can't remember the last time I had an issue when installing a package; rebooting to apply an install atomically will likely make no difference to me other than wasting my time). I know I can use containers to get around this, but once again, this just adds to the hassle.
Thanks for the quick reply!
As alluded by the following in my previous comment:
So, to conclude this point; yes, an immutable distro is not required to come with all those features by strict virtue of its immutability.
Arguably, our talk might have resolved a lot earlier if in your original comment;
, you had replaced "immutable" by "atomic". To be clear, the "immutable" in "immutable distro" is not the correct adjective if we want to be descriptive. That's probably why you chose to give the (current) definition of "immutable distro" rather than "being immutable" when prompted. Hence, the name "immutable distro" is continuously being redefined and rehashed based on the distros that are represented by them. The popular definition for "immutable distro" right after SteamOS 3.0 was released, was very different from the definition you gave it earlier. Which was again very different when we had only NixOS and Guix System as our points of references. Just like how I mentioned to not have any qualms with your earlier definition, I likely wouldn't have any qualms with earlier shifts of the definition. Therefore, I'd argue, the notion of "immutable distro" is perhaps best defined by the distros that it represents. And currently, within the discourse, Fedora Atomic is its flag bearer. Hence, why a lot of other comments found under this post make assumptions based on that as their point of reference. But, I see Fedora Atomic merely as an iteration of NixOS but image-based (Colin Walters has even reported to be inspired by NixOS). And, the other (notable) immutable distros are heading that way. (And some, like blendOS, might already have come very close to that vision already.)
It may not be very significant, but it is significant enough that even Qubes OS (with their excellent model) aspires to it. Btw, I never implied or said that security became perfect (quite the opposite actually) just by virtue of becoming immutable. Instead, I only said it improved*. Finally, I suppose it's worth mentioning that e.g. Fedora Atomic does track the changes to
/etc
, keeps a pristine copy of/etc
and allows you to flush/etc
.No space occupied on your machine is better than some space occupied on your machine. I only said it's better, its significance is definitely up to debate though.
To be clear, I didn't intend to imply that literally all consequences are better. With "consequences", I actually implied the points that were mentioned in the comment you first replied to; rock solid system even with relatively up to date packages, possibility to enable automatic updates in background without fearing breakage, (quasi) factory reset feature, setting up a new system in just a fraction of the time required otherwise.
Let's not disregard NixOS and Guix System 😅. Furthermore, I understand the frustration. Thankfully, even in Fedora Atomic, there's a plethora of alternative package managers you can use to suit your needs; AppImage, Flatpak, Guix, Homebrew, Nix etc. Besides, I don't think you install new software every single day. FWIW, systemd does offer the soft-reboot functionality; though, the biggest problem for me personally is restarting all the programs that were open. So yeah... Though, this might be an issue of the past with the upcoming
systemd-sysext
.This criticism is absolutely fair. I know you felt compelled to said this only due to a misinterpretation of what I meant with "consequences". Nevertheless, I am totally with you that the 'Fedora Atomic'-model is not perfect. And, perhaps, never will be. For all we know, it will coexist with traditional distributions perpetually.