this post was submitted on 25 May 2024
564 points (96.4% liked)
Science Memes
10950 readers
2208 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- !abiogenesis@mander.xyz
- !animal-behavior@mander.xyz
- !anthropology@mander.xyz
- !arachnology@mander.xyz
- !balconygardening@slrpnk.net
- !biodiversity@mander.xyz
- !biology@mander.xyz
- !biophysics@mander.xyz
- !botany@mander.xyz
- !ecology@mander.xyz
- !entomology@mander.xyz
- !fermentation@mander.xyz
- !herpetology@mander.xyz
- !houseplants@mander.xyz
- !medicine@mander.xyz
- !microscopy@mander.xyz
- !mycology@mander.xyz
- !nudibranchs@mander.xyz
- !nutrition@mander.xyz
- !palaeoecology@mander.xyz
- !palaeontology@mander.xyz
- !photosynthesis@mander.xyz
- !plantid@mander.xyz
- !plants@mander.xyz
- !reptiles and amphibians@mander.xyz
Physical Sciences
- !astronomy@mander.xyz
- !chemistry@mander.xyz
- !earthscience@mander.xyz
- !geography@mander.xyz
- !geospatial@mander.xyz
- !nuclear@mander.xyz
- !physics@mander.xyz
- !quantum-computing@mander.xyz
- !spectroscopy@mander.xyz
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and sports-science@mander.xyz
- !gardening@mander.xyz
- !self sufficiency@mander.xyz
- !soilscience@slrpnk.net
- !terrariums@mander.xyz
- !timelapse@mander.xyz
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I actually designed a digital equalizer using an IIR filter this semester, which actually does theoretically work on sequences of numbers, which constitutes an infinite dimensional vector space. The actual math was just algebra and programming, but it was an implementation of a Z-transform transfer function which is a sequence operator (maps input sequence to output sequence).
IMO infinite-dimensional stuff shows up in two types of problems:
For some reason, you need to solve the partial differential equation you started with, i.e. you can't use symmetry or approximations to simplify it into an ordinary differential equation.
When you're dealing with signals that change in time or space, you have to decompose those signals into simpler signals that are easier to analyze.
Infinite-dimensional vector spaces also show up in another context: functional analysis.
If you stretch your imagination a bit, then you can think of vectors as functions. A (real) n-dimensional vector is a list of numbers (v~1~, v~2~, ..., v~n~), which can be thought of as a function {1, 2, ..., n} → ℝ, where k ∊ {1, ..., n} gets sent to v~k~. So, an n-dimensional (real) vector space is a collection of functions {1, 2, ..., n} -> ℝ, where you can add two functions together and multiply functions by a real number.
Under this interpretation, the idea of "infinite-dimensional" vector spaces becomes much more reasonable (in my opinion anyway), since it's not too hard to imagine that there are situations where you want to look at functions with an infinite domain. For example, you can think of an infinite sequence of numbers as a function with infinite domain. (i.e., an infinite sequence (v~1~, v~2~, ...) is a function ℕ → ℝ, where k ∊ ℕ gets sent to v~k~.)
and this idea works for both "countable" and "uncountable" "vectors". i.e., you can use this framework to study a vector space where each "vector" is a function f: ℝ → ℝ. why would you want do this? because in this setting, integration and differentiation are linear maps. (e.g., if f, g: ℝ → ℝ are "vectors", then D(f + g) = Df + Dg, and ∫*(f+g) = ∫f + ∫g, where D denotes taking the derivative.)
From an engineering perspective, functional analysis is the main mathematical framework behind (1) and (2) in my previous comment. Although they didn't teach functional analysis for real in any of my coursework, I kinda picked up that it was going to be an important topic for what I want to do when I kept seeing textbooks for it cited in PDE and "signals and systems" books. I've been learning it on my own since I finished Calc III like four years ago.
Such an incredibly interesting and deep topic IMO.