this post was submitted on 08 May 2024
17 points (90.5% liked)

Daily Maths Challenges

189 readers
18 users here now

Share your cool maths problems.



Complete a challenge:


Post a challenge:


Feel free to contribute to a series by DMing the OP, or start your own challenge series.

founded 6 months ago
MODERATORS
 
  • Evaluate SUM(1/(n + n^2)) from n = 1 to infty
you are viewing a single comment's thread
view the rest of the comments
[–] zkfcfbzr@lemmy.world 4 points 6 months ago

solutionWith partial fractions:

1/(n + n²) = 1/(n(n+1)) = A/n + B/(n+1)

A(n+1) + Bn = 1

n = 0 gives A = 1, n = -1 gives B = -1

1/(n+n²) = 1/n - 1/(n+1)

Σ (n = 1 to ∞) 1/(n+n²) = Σ (n = 1 to ∞) 1/n - Σ (n = 1 to ∞) 1/(n+1)

= Σ (n = 1 to ∞) 1/n - Σ (n = 2 to ∞) 1/n

= 1/1 + Σ (n = 2 to ∞) 1/n - Σ (n = 2 to ∞) 1/n

= 1

Guessing this is the standard solution