this post was submitted on 05 Mar 2024
160 points (97.1% liked)
Programming
17433 readers
215 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities !webdev@programming.dev
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
CUDA is a system for programming GPUs (Graphics Processing Units), and it can be used to do far more computations in parallel than regular CPU programming could. In particular, it's widely used in AI programming for machine learning. NVIDIA has quite a hold on this industry right now because CUDA has become a de facto standard, and as a result NVIDIA can price its graphics cards very high. Intel and AMD also make powerful GPUs that tend to be cheaper than NVIDIA's, but they don't natively support CUDA, which is proprietary to NVIDIA. A translation layer is a piece of software that interprets CUDA commands and translates them into commands for the underlying platform such as an AMD graphics card. So translation layers allow people to run CUDA software, such as machine learning software, on non-NVIDIA systems. NVIDIA has just changed its licence to prohibit this, so anyone using CUDA has to use a natively CUDA-capable machine, which means an NVIDIA one.
Thank you, these are really great entry-level answer s so that I can understand what the heck is going on.