this post was submitted on 28 Sep 2023
61 points (91.8% liked)
Linux
48318 readers
1139 users here now
From Wikipedia, the free encyclopedia
Linux is a family of open source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991 by Linus Torvalds. Linux is typically packaged in a Linux distribution (or distro for short).
Distributions include the Linux kernel and supporting system software and libraries, many of which are provided by the GNU Project. Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses the name GNU/Linux to emphasize the importance of GNU software, causing some controversy.
Rules
- Posts must be relevant to operating systems running the Linux kernel. GNU/Linux or otherwise.
- No misinformation
- No NSFW content
- No hate speech, bigotry, etc
Related Communities
Community icon by Alpár-Etele Méder, licensed under CC BY 3.0
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
You aren't actually asking to how to bypass encryption because the key is already in memory. You are asking about the much simpler task of compromising a computer with physical access to same. Depending on configuration this can be as ridiculous as killing the lockscreen process or as hard as physically opening the case chilling the contents of ram enough that data survives transfer to different physical hardware. See also the massive attack surface of the USB stack.
That doesn't sound trivial at all.
On most systems you can press a hotkey in grub to edit the Linux command line that will be booted and in about 7 keystrokes gain access to any unlocked filesystem. Asking how you can break into a system you physically control is like asking how many ways you could break into a house supposing you had an hour alone with a crowbar the answers are legion. No machine in someone else's hand which is unlocked can possibly be deemed secure.
Even dumber no installer will create such an insecure configuration because the people that design Linux installers are smarter than you.
I'm not advocating for this right now, but yes that is why when using TPM password, one must insure to enable secure boot, enable bios password, disable boot media, and disable grub editing. That's the recommended proceedure for this setup.
This is essentially how HEADs works too. Some very smart people have worked on TPM boot and it is even built into systemd. You're just wrong here.
Reference:
Whether I would fully rely on the systems proper operation against a state sponsored adversary is a different question though.
Ah yes security brought to you by the same folks who brought you "bypass encryption by holding down the enter key" and "name your user 0day to get root access"
It's like putting security cams and interior locks all over your house instead of locking the front door. If your storage can't be read without the passphrase then NOTHING can fail in such a way as to provide access. Simplicity and obvious correctness have virtues.
There isn't much reason to use anything other than FDE with a sufficient passphrase, auto login so the user doesn't have to type two distinct passwords, and go luks suspends to evict key from memory on suspend.
Boot up enter the passphrase -> see your desktop -> close the lid -> open the lid -> enter your passphrase
I don't think you understand the TPM chain, there is absolutely value in validating that the firmware, bootloader, kernel, and initramfs haven't changed and not decrypt the disk if they have. That's what the TPM does, it doesn't just store a key, it calculates it.
Obviously, the optimal setup is TPM calculation + passphrase, which completely avoids decrypting the drive if some compromise, or modification, happened somewhere in the bootchain, or if the disk is taken out of the computer.
I never suggested there wasn't value in the TPM for anyone although I think such validation has small value for most folks use case. Normal users are worried about theft of laptop by criminals not spies bugging their machine. I suggested that any configuration without a passphrase was inherently insecure.
It's not an "optimal setup" its the only setup that makes even the slightest sense because the alternative configuration can be defeated by a smart 12 year old with access to google.
Actually, thinking more about this...
Can you give an example of this grub cmdline bypass? If what you're saying is true, this would be a huge issue. I'd switch bootloaders over something like this.
You can disable editing and enable password in grub, done. That's the recommended proceedure for TPM boot.
Finally, someone reasonable.
You can google lets drop all the crap you think you understand but don't use simple logic. Unencrypted data isn't secure against physical access. If your data is automatically unencrypted without benefit of entering a passphrase then its not actually secure. There's no free lunch.
Lol, holy hostility, Batman.
I know there's no such thing as a free lunch. That's why I purchased a TPM for my machine. Anyway, if your intent is to prevent someone from sticking your HDD into another machine to extract your data, FDE ticks that box. If you're worried about highly advanced attacks to find your kiddie porn collection, then you probably are justified in your paranoia.
Security is about understanding reasonable threat models. 99.99% of reasonable threats to your machine involve theft or loss of the entire machine and personal data or accounts being accessed. This doesn't require advanced attacks or paranoia nor does it require extreme measures to protect against. No installer will create such a configuration without a passphrase because its a simple and effective step to take to protect your data that is enforced by systems created by people who are all smarter than you.
Your cute statement about child porn is tasteless and thoughtless. I don't take reasonable precautions like taking 5 seconds to type a password because I'm paranoid or criminal I do so because I have basic common sense.
"Arguing that you don't care about the right to privacy because you have nothing to hide is no different than saying you don't care about free speech because you have nothing to say." https://en.wikipedia.org/wiki/Nothing_to_hide_argument
A thief is going to steal your computer and gut it, not apply liquid nitrogen to your RAM and attach a bunch of instruments with hopes of extracting a crypto key so he can have a small chance at accessing potentially interesting data.
If you think a thief is going to do more, your threat model is very skewed. I suspect that you think you're much more interesting than you actually are.
But it was cute.
You asked for details and pick on the unlikely measure of cold boot but ignore the fact that in most configurations you can press the letter "e" to edit the boot up command line. It wasn't "cute" it made you look like a gross human being.
Lol, whatever.
Though after a point rubber hose cryptanalysis will become the more pragmatic option for an attacker.
Depends on the attacker. For example: In Europe, law enforcement can legally confiscate/steal your laptop and read out the keys from RAM. They can't (legally) force you to give up your password.
I can say with full confidence this is something you'll never actually need to worry about. Law enforcement isn't just going to grab laptops and pull keys. Plus, it's easier for them to grab the laptop while it's logged in anyways. 😐
I know of several instances where laptops where confiscated and I wouldn't put it past law enforcement to know how to extract the keys.