this post was submitted on 05 Aug 2023
80 points (91.7% liked)

Asklemmy

43945 readers
716 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy 🔍

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~

founded 5 years ago
MODERATORS
 

I don't believe free will is real. I'm not a deep physics person (and relatively bad at math), but with my undergrad understanding of chemistry, classical mechanics, and electromagnetism, it seems most rational that we are creatures entirely controlled by our environments and what we ingest and inhale.

I'm not deeply familiar with chaos theory, but at a high level understand it to be that there's just too many variables for us to model, with current technology, today. To me that screams "god of the gaps" fallacy and implies that eventually we WILL have sufficiently powerful systems to accurately model at that scale...and there goes chaos theory.

So I'm asking you guys, fellow Lemmings, what are some arguments to causality / hard determinism, that are rooted entirely in physics and mechanics, that would give any credit to the idea that free will is real?

Please leave philosophical and religious arguments at the door.

you are viewing a single comment's thread
view the rest of the comments
[–] intensely_human@lemm.ee 8 points 1 year ago (4 children)

Now here’s an interesting take.

In principle, one might be able to predict behavior based on this model.

But I would asset that it is not possible to achieve these conditions no matter what godlike technology one has.

Let’s go simpler. We don’t want to predict a human we want to predict the path of one electron.

Starting from initial conditions we should be able to predict the path of that electron right Wrong!

It’s wrong because it is impossible, in a way that cannot be overcome in this or any universe, to know those initial conditions.

And that may seem like a technicality, but that’s exactly where the chink in the armor is: no matter how precise your model, it’s impossible to determine the state of a closed system, because it’s closed, and it’s impossible to predict the behavior of an open system, because its evolution is determined by its interactions with its surroundings, and you can’t get all that information.

So the idea of using physics to predict things precisely is a Platonic ideal, not a thing which can manifest in reality.

[–] sloonark@lemm.ee 6 points 1 year ago

But unpredictability is not the same as free will. Doesn't free will imply a conscious decision being made?

[–] CodingAndCoffee@lemmy.world 3 points 1 year ago (1 children)

I think this is my favorite answer so far.

[–] intensely_human@lemm.ee 1 points 1 year ago

Thanks, it’s mine as well.

[–] Kissaki@feddit.de 3 points 1 year ago (1 children)

The problem with your simplification is that it loses all predictability.

We can't predict an electron on a miniscule scale. But we certainly can predict the rock it is a part of falling.

We can't predict an electron. But we can determine and estimate with some probabilities. And on a higher scale the summation of individual behavior becomes quite predictable.

If we were to take only your electron argument, it implies we can not predict any material movement.

[–] intensely_human@lemm.ee 1 points 11 months ago

But the macroscopic universe responds to the subatomic universe because of the existence of chaotic systems which can amplify the tiniest difference. The prediction of the rock breaks down over time because it’s interacting with macroscopic inputs from chaotic systems around it.