this post was submitted on 02 Aug 2023
202 points (100.0% liked)
Science
13001 readers
14 users here now
Studies, research findings, and interesting tidbits from the ever-expanding scientific world.
Subcommunities on Beehaw:
Be sure to also check out these other Fediverse science communities:
This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
No, computing (as in general computing) will barely be affected. Computing uses semiconductors, which this (AFAIK) isn't. Switching losses always occur unless you switch instantly, which is impossible. Most of the heat of cpus comes from there.
Specialized things like quantum computing are a different story.
What this superconductor could mean though: you could have a relatively thin cable from say, the Sahara to Europe, that can losslessly transfer energy. No losses whatsoever. So you can produce energy wherever energy is present, and use it where energy is required!
You can use superconductors to create Josephson junctions, which can be used for standard logic operations (but also useful in quantum computers). These junctions are much more efficient and much faster than transistors.
This particular superconductor will not be useful for transmitting power because the effect breaks down at very low current limits in this material, but it will be very useful for studying superconductors.
So contrary to what you said, this will in fact not be useful for power transmission, but could be useful for CPUs and GPUs, and could lead to computers that are hundreds or thousands of times faster and more efficient than what we have today.
To be fair this material may never see a practical use though.
I was under the impression the major struggle to create a room temperature single electron transistor, were not so much the tunneling junctions, but the quantum dot size and placement, to avoid electrons passing through just because of their thermal energy.
How would this superconductor help in that case? (or am I missing something? this is kind of at the limit of my quantum computing knowledge)
Thanks for the enlightening comment! I see you know way more about this than I do, so, guy who I replied to originally, listen to this guy and not me.
I didn't go far down into the scientific material concerning this, so it seems I was quite misinformed.
Well, almost no losses. No resistive losses. Should still lose some because of electromagnetic fields surrounding the cabling interacting with the environment.
This superconductor is a ceramic so not ductile at all. It also can only carry very small amps as a super conductor. It's possible this way of thinking about super conductors will yield better wires, but they wont be made from this exact material.
I can’t speak to the superconducting potions of this comment, but the general computing information is mostly correct.
Switching losses are a result of capacitance in the circuit. These capacitances aren’t going anywhere in transistors made from semiconductors. Additionally, even when a transistor is on it has some resistance, which of course creates heat whenever a current moves through that transistor. Leakage current also generates waste heat.
I could see room temperature super conductors being useful as replacements for bus lines in a digital circuit, but this wouldn’t eliminate the heat in the circuit. Most of the heat is created in the transistor junctions, so the effect would be very minimal if even noticeable.
Still, with good superconductor, desing of the chips will be greatly affected. Not caring about removing the heat from the layers will open huge possibilities