this post was submitted on 01 Aug 2023
1584 points (98.1% liked)
Technology
59197 readers
3117 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
But we don't have that solution yet (see above). That's like hanging on the idea of having nuclear fusion available. Yes, theoretically nice, but until they are practical, we shouldn't count on it.
Yes, theoretically the "waste" of current reactors still has energy to be harvested. But practically we can't use them to a degree where there is no waste afterwards.
For the past decades and sitll ongoing, fission reactors are not clean (also decomissioning them leaves a lot of unusable waste; and they have to be decomissioned at some point).
Also from what I know, extracting the nuclear material from the earth and preparing it for use in a fission reactor is not very environmentally friendly either.
Is nuclear better than coal? Very likely. But it's not clean.
Reprocessing already exists and it's been done for decades. I can't imagine reprocessing fuel for recycling the usable components is that compelling in the US and it would be more geared to waste reduction. 99% of spent fuel by mass could be reused or otherwise treated differently for disposal as it's radioactivity is much much smaller than the portion that has been transmuted during power production.
Every atom has energy in it, regardless of whether it is radioactive or not. Radioactiveness just makes it relatively easy to extract that energy. But even then, it's not that simple, not every radioactive material is good for a nuclear reactor. If the fuel absorbs too many neutrons without fission, or produces elements that do, then it can become poison for the reactor. And if it, or the elements it produces, emit very few delayed neutrons and very quickly then it makes it harder to keep the reactor in a sub-critical state (i.e. it makes it harder to not make it explore). Often for these reasons you can't fully use reprocessed fuel, and instead you have to mix it in low percentages with normal fuel. Reprocessed fuel is also harder (thus cost more) to produce since you have to work with highly radioactive materials.