this post was submitted on 02 Nov 2024
207 points (96.0% liked)

Green Energy

2204 readers
98 users here now

Everything about energy production and storage.

Related communities:

founded 2 years ago
MODERATORS
 

According to data from the Energy Information Administration (EIA), more than 20 gigawatts (GW) of battery capacity have been added to the US electric grid in the last four years. This rapid expansion is equivalent to the production of 20 nuclear reactors and is crucial for averting power disruptions, especially in states that rely significantly on intermittent renewable energy sources such as wind and solar.

you are viewing a single comment's thread
view the rest of the comments
[–] JohnDClay@sh.itjust.works 2 points 1 week ago* (last edited 1 week ago) (2 children)

They're equal if they're running at a 1c discharge rate. Lfp, which are stable and good for safety, can have higher discharge rates of 5c up to 25c. Which would mean the capacity would be much less. To compare apples to apples, it'd be much better if they gave both the GW and GWh numbers.

[–] Mihies@programming.dev 2 points 1 week ago

Yep, the two numbers picture the actual status. What good is having a GW power if it lasts for a second, sort of speak.

[–] intensely_human@lemm.ee 1 points 1 week ago (2 children)

No they’re equal if the battery is designed to provide 1 hr of coverage.

A 1 GWh batter will last 1 hour if its discharge rate is 1 GW.

It’s the timeframe of 1 hour that makes these two measures numerically equal.

[–] JohnDClay@sh.itjust.works 3 points 1 week ago

That's what 1c means. If it were designed to provide 25GW but only lasted 1hr, then it'd be 25c.

[–] Tobberone@lemm.ee 1 points 1 week ago

Thats what was said, for some applications 1c is good, for others 0,5 or even 0,25 is better. It depends on your usecase. Frequency regulation is often 1c, while if you are primarily concerned about depth, you could choose another configuration. It is also partly dependent on chemistry.

As an example: a 100kWh can be at either 1c discharge rate, or 0,5c. 50 kW(0,5c) is usually cheaper because there is less need for hardware (and I believe less risk of thermal runaway)