this post was submitted on 02 Nov 2024
209 points (96.0% liked)
Green Energy
2275 readers
138 users here now
Everything about energy production and storage.
Related communities:
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
They're equal if they're running at a 1c discharge rate. Lfp, which are stable and good for safety, can have higher discharge rates of 5c up to 25c. Which would mean the capacity would be much less. To compare apples to apples, it'd be much better if they gave both the GW and GWh numbers.
Yep, the two numbers picture the actual status. What good is having a GW power if it lasts for a second, sort of speak.
No they’re equal if the battery is designed to provide 1 hr of coverage.
A 1 GWh batter will last 1 hour if its discharge rate is 1 GW.
It’s the timeframe of 1 hour that makes these two measures numerically equal.
That's what 1c means. If it were designed to provide 25GW but only lasted 1hr, then it'd be 25c.
Thats what was said, for some applications 1c is good, for others 0,5 or even 0,25 is better. It depends on your usecase. Frequency regulation is often 1c, while if you are primarily concerned about depth, you could choose another configuration. It is also partly dependent on chemistry.
As an example: a 100kWh can be at either 1c discharge rate, or 0,5c. 50 kW(0,5c) is usually cheaper because there is less need for hardware (and I believe less risk of thermal runaway)