bit of a cutthroat way to characterize what you "like". Might actually make the interviewer downvote you for threatening their position.
jdnewmil
Resistance is like shocks on a car... push hard to compress and it compresses faster. push less hard (voltage) and it doesn't move as fast (current). Pull it (negative voltage) and it expands (current flowing the other way). Resistors resist (voltage against) flow (current).
Capacitors you sorta seem to get: current flowing in one direction through a capacitor builds up voltage the remains after the current stops... like the force in a spring builds up as it compresses and when the motion stops the force is still there.
What you seem to confuse with resistance is inductance, where the force (voltage) on an air hockey puck makes it speed up (current flow), and when the force stops pushing it it just keeps moving (current keeps flowing).
The general term for these voltage-current relationships is impedance, because in the general case where voltage or current is oscillating or rapidly switching on and off you get some effects that resemble resistance (voltage pushing back on current or vice versa).
Final concept is that any time you have something trying to force specific levels of current or voltage on a pin, the "setter" (whatever is doing the forcing, typically referred to as the "source") has impedance and so does the "getter" (whatever is being forced, referred to as the "load"). If you have a fishing rod and you want the tip to move slowly, you can easily move it where you want it to go, but if you want to shake it fast it won't move as far (the weight of the tip is like inductance resisting the motion with force/voltage).
So, a microchip pin might have high resistance to ground but also high capacitance to ground... and a quick pulse of voltage will immediately cause current to flow into the empty capacitor, and if the capacitance is big enough the voltage won't change much, or will require more time to change. High capacitance has low impedance... it sucks up any available current as the desired change in voltage happens. interestingly, there are two options for making the pin voltage change faster... increase the current level being used by the source (by reducing impedance within the source so it can get out to the pin easier), or reducing the amount of current required to change the pin voltage by raising the impedance to ground inside the chip package (that is, reducing the capacitance inside the chip package).
When the source impedance is very very large, that is like having the signal generator probe laying on the bench instead of connected to the pin. When the source impedance is large and the internal pin impedance is large, then any stray electric or magnetic fields can push the pin voltage around easily. This is what they call floating... and if the microchip is reacting to those erratic voltage signals then the circuit as a whole will behave erratically as it tries to react to noisy input.
An output pin usually (but not always) has a lower source impedance than a tri-state input in its high impedance state. If you connect it to a floating input then the input stops floating and follows whatever the source is forcing it to.
An input pin usually has an input impedance similar to the source impedance of sources connected to it... this generally allows the input to be controlled most quickly. Inputs whose voltage doesn't change quickly tend to be less useful than ones the do change quickly bandwidth and clock speeds can be faster.
If you try to connect microchips built with different technologies together (e.g. CMOS vs TTL) then they may not communicate quickly or with minimal wasted power because they have different typical impedances (and voltage levels).
Technically he can claim he has said "vote for me, you won't have to vote for me again" because he won't be running again... someone else will. This is the kind of doublespeak he has used before. He doesn't want to "clarify" though unless he gets cornered in, say, court.
Of course, if he is really playing the Julius Caesar card then there won't be any more voting to worry about.
I view college as training for dealing with deadlines and some logic practice (e.g. this essay isn't coherent; math exam next Wednesday). I never see people come through the door ready to go... it takes a few weeks before even the most basic tasks can be delegated. Their writing still sucks 90% of the time, and their math is usually shaky (lucky we have automated many steps with computers.)
I agree that the pace at which all this goes is exhausting and more breaks are needed, but the third world is still full of people working overtime to overtake these "professional" jobs that colleges purport to prep workers for. Don't go to an overpriced Ivy League school and take on debt and expect a 20h week... go to a govt sponsored school and be prepared to compete with the remote workers working for the company that is undercutting your employer. Welcome to globalization.
nope. Inadvisable.
Having used the web version of Office at my job, I know I would not pay for it. It is compatible-ish, but severely lacking in features, enough so that I don't trust it to render properly or maintain the formatting entered using the desktop app. If that is good enough then there are lots of alternatives.
I just skip Medium due to the walled garden. Even worse than Reddit. I have never come across a link to substack... are they an even higher wall that search engines are stymied by?
I fail to get why you think putting your stuff on Medium is a good idea.
Pretty vague question.
One assumption that "mathy types" like to make is that the slope be negative-proportional to how far the value (not slope) is from the desired target value... and then you get an exponential decay (buzzword). But there are lots of other assumptions one could make... some of which lead to PID control (buzz; very mathy stuff).
But these days you could use a neural net (buzz; so mathy they don't usually pretend to understand what the NN "learns") or fuzzy logic (buzz; which is ideally intuitive but has many surprisingly mathy assumptions) to make the behavior nonlinear and go to the desired result much faster... so really, there are many many possible answers. Maybe you can watch some ELI5 videos about these buzzwords and refine your question?
We have a political environment that lacks credible independent commentators (e.g. Walter Cronkite), so anyone presenting themselves as independent who calls bullshit on a politico is immediately labeled as biased.
What mechanism do you think could overcome this and pull the mic plug to reduce the incentive to lie without immediately being vigorously attacked?
There are thousands of programs for Linux... but you should be warned that relatively few programs run natively on both Windows and Linux. In some cases there are ways to run "Windows programs" on Linux, but in general such successes are special cases. If you absolutely must have Windows you can run it in a virtual machine... but you will most likely be happiest with Linux if you aren't chasing after such things.
I use Windows for work because our IT department only supports that... but I use cygwin and wsl to get a smidgen of my familiar Linux tools that I use on my personal computers.
I know, I am just someone on the Internet, but I was acquainted with someone who fasted for 40 days... twice (a little over a year apart I think)... in pursuit of some kind of spiritual enlightenment. He started out a little on the heavy side, and ended up, well, emaciated. Anyway, he did have water, which is where I think this woman's story falls apart.