this post was submitted on 21 Mar 2024
70 points (67.3% liked)

Science Memes

11047 readers
2967 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
all 10 comments
sorted by: hot top controversial new old
[–] OpenStars@startrek.website 56 points 8 months ago

Hrm, it sounds like the teacher already knew the answer.

Maybe stop wasting the time of the student then!?

You're welcome.

[–] Dave@lemmy.nz 53 points 8 months ago (2 children)

Can someone explain this to me? Not the maths, the joke.

[–] fossilesque@mander.xyz 42 points 8 months ago (2 children)
[–] LinkOpensChest_wav@lemmy.blahaj.zone 9 points 8 months ago (1 children)

Old man voice: "Aunt eye memes? In my day, we only had regular memes, and I turned out fine!"

[–] Venator@lemmy.nz 3 points 7 months ago

I prefer large memes

[–] driving_crooner@lemmy.eco.br 17 points 8 months ago* (last edited 8 months ago) (1 children)

The test:

Solve e^{int_0 1 x2+x+1 dx}^

[–] Usernamealreadyinuse@lemmy.world 2 points 7 months ago* (last edited 7 months ago)

No, copilot solve this test

Answer:

To solve the expression ( e^{\int_0^1 x^2+x+1 , dx} ), we first need to calculate the integral of ( x^2+x+1 ) from 0 to 1.

The integral of ( x^2+x+1 ) is: [ \int x^2+x+1 , dx = \frac{x^3}{3} + \frac{x^2}{2} + x + C ]

Evaluating this from 0 to 1 gives us: [ \left[ \frac{x^3}{3} + \frac{x^2}{2} + x \right]_0^1 = \left( \frac{1}{3} + \frac{1}{2} + 1 \right) - \left( 0 + 0 + 0 \right) = \frac{11}{6} ]

Now, we raise ( e ) to the power of this result: [ e^{\frac{11}{6}} ]

This is the solution to the given expression. If you need a numerical approximation, ( e^{\frac{11}{6}} ) is approximately 4.953.

[–] AtomfriedMegaforce@lemmy.world 4 points 7 months ago

...and this student was Albert Einstein