Technology
This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.
Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.
Rules:
1: All Lemmy rules apply
2: Do not post low effort posts
3: NEVER post naziped*gore stuff
4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.
5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)
6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist
7: crypto related posts, unless essential, are disallowed
view the rest of the comments
Congratulations, you have now arrived at the Trough of Disillusionment:
It remains to be seen if we can ever climb the Slope of Enlightenment and arrive at reasonable expectations and uses for LLMs. I personally believe it's possible, but we need to get vendors and managers to stop trying to sprinkle "AI" in everything like some goddamn Good Idea Fairy. LLMs are good for providing answers to well defined problems which can be answered with existing documentation. When the problem is poorly defined and/or the answer isn't as well documented or has a lot of nuance, they then do a spectacular job of generating bullshit.
The marketing spin calling LLMs "Artificial Intelligence" doesn't help.
Same as it ever was with the AI hype cycle.
LLMs are only ever going to be a single component of an AI system. We’ve only had LLMs with their current capabilities for a very short time period, so the research and experimentation to find optimal system patterns, given the capabilities of LLMs, has necessarily been limited.
That’s a separate problem. Unless it results in decreased research into improving the systems that leverage LLMs, e.g., by resulting in pervasive negative AI sentiment, it won’t have a negative on the progress of the research. Rather the opposite, in fact, as seeing which uses of AI are successful and which are not (success here being measured by customer acceptance and interest, not by the AI’s efficacy) is information that can help direct and inspire research avenues.
Clarification: LLMs are not reliable at this task, but we have patterns for systems that leverage LLMs that are much better at it, thanks to techniques like RAG, supervisor LLMs, etc..
TBH, so would a random person in such a situation (if they produced anything at all).
As an example: how often have you heard about a company’s marketing departments over-hyping their upcoming product, resulting in unmet consumer expectation, a ton of extra work from the product’s developers and engineers, or both? This is because those marketers don’t really understand the product - either because they don’t have the information, didn’t read it, because they got conflicting information, or because the information they have is written for a different audience - i.e., a developer, not a marketer - and the nuance is lost in translation.
At the company level, you can structure a system that marketers work within that will result in them providing more correct information. That starts with them being given all of the correct information in the first place. However, even then, the marketer won’t be solving problems like a developer. But if you ask them to write some copy to describe the product, or write up a commercial script where the product is used, or something along those lines, they can do that.
And yet the marketer role here is still more complex than our existing AI systems, but those systems are already incorporating patterns very similar to those that a marketer uses day-to-day. And AI researchers - academic, corporate, and hobbyists - are looking into more ways that this can be done.
If we want an AI system to be able to solve problems more reliably, we have to, at minimum:
In terms of what they can accept as input, LLMs have a huge amount of flexibility - much higher than what they appear to be good at and much, much higher than what they’re actually good at. They’re a compelling hammer. System designers need to not just be aware of which problems are nails and which are screws or unpainted wood or something else entirely, but also ensure that the systems can perform that identification on their own.
This is an absolutely wonderful graph. Thank you for teaching me about the trough of disillusionment.