this post was submitted on 18 Dec 2023
12 points (92.9% liked)

Advent Of Code

761 readers
2 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2023

Solution Threads

M T W T F S S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 18: Lavaduct Lagoon

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] cacheson@kbin.social 2 points 10 months ago* (last edited 10 months ago) (2 children)

Nim

I am not making good time on these anymore.

For part 1, I walked through the dig plan instructions, keeping track of the highest and lowest x and y values reached, and used those to create a character grid, with an extra 1 tile border around it. Walked the instructions again to plot out the trench with #, flood-filled the exterior with O, and then counted the non-O tiles. Sort of similar to the pipe maze problem.

This approach wouldn't have been viable for part 2, due to the scale of the numbers involved. Instead I counted the number of left and right turns in the trench to determine whether it was being dug in a clockwise or counterclockwise direction, and assumed that there were no intersections. I then made a polygon that followed the outer edge of the trench. Wherever there was a run of 3 inward turns in a row, that meant there was a rectangular protrusion that could be chopped off of the main polygon. Repeatedly chopping these off eventually turns the polygon into a rectangle, so it's just a matter of adding up the area of each. This worked great for the example input.

Unfortunately when I ran it on the actual input, I ran out of sets of inward turns early, leaving an "inside out" polygon. I thought this meant that the input must have intersections in it that I would have to untwist somehow. To keep this short, after a long debugging process I figured out that I was introducing intersections during the chopping process. The chopped regions can have additional trench inside of them, which results in those parts ending up outside of the reduced polygon. I solved this by chopping off the narrowest protrusions first.

[โ€“] zarlin@lemmy.world 1 points 10 months ago (1 children)

Good job on persevering with this one. Your approach for part 2 sounds quite viable, it is very similar to the Ear clipping method for triangulating a polygon.

[โ€“] cacheson@kbin.social 1 points 10 months ago

Yeah, I read up on ear clipping for a small game dev project a while back, though I don't remember if I actually ended up using it. So my solution is inspired by what I remember of that.