this post was submitted on 18 Dec 2023
12 points (92.9% liked)
Advent Of Code
761 readers
2 users here now
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
AoC 2023
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 |
Rules/Guidelines
- Follow the programming.dev instance rules
- Keep all content related to advent of code in some way
- If what youre posting relates to a day, put in brackets the year and then day number in front of the post title (e.g. [2023 Day 10])
- When an event is running, keep solutions in the solution megathread to avoid the community getting spammed with posts
Relevant Communities
Relevant Links
Credits
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Nim
I am not making good time on these anymore.
For part 1, I walked through the dig plan instructions, keeping track of the highest and lowest x and y values reached, and used those to create a character grid, with an extra 1 tile border around it. Walked the instructions again to plot out the trench with
#
, flood-filled the exterior withO
, and then counted the non-O
tiles. Sort of similar to the pipe maze problem.This approach wouldn't have been viable for part 2, due to the scale of the numbers involved. Instead I counted the number of left and right turns in the trench to determine whether it was being dug in a clockwise or counterclockwise direction, and assumed that there were no intersections. I then made a polygon that followed the outer edge of the trench. Wherever there was a run of 3 inward turns in a row, that meant there was a rectangular protrusion that could be chopped off of the main polygon. Repeatedly chopping these off eventually turns the polygon into a rectangle, so it's just a matter of adding up the area of each. This worked great for the example input.
Unfortunately when I ran it on the actual input, I ran out of sets of inward turns early, leaving an "inside out" polygon. I thought this meant that the input must have intersections in it that I would have to untwist somehow. To keep this short, after a long debugging process I figured out that I was introducing intersections during the chopping process. The chopped regions can have additional trench inside of them, which results in those parts ending up outside of the reduced polygon. I solved this by chopping off the narrowest protrusions first.
Good job on persevering with this one. Your approach for part 2 sounds quite viable, it is very similar to the Ear clipping method for triangulating a polygon.
Yeah, I read up on ear clipping for a small game dev project a while back, though I don't remember if I actually ended up using it. So my solution is inspired by what I remember of that.