this post was submitted on 29 Oct 2023
94 points (93.5% liked)

Programming

17378 readers
256 users here now

Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!

Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.

Hope you enjoy the instance!

Rules

Rules

  • Follow the programming.dev instance rules
  • Keep content related to programming in some way
  • If you're posting long videos try to add in some form of tldr for those who don't want to watch videos

Wormhole

Follow the wormhole through a path of communities !webdev@programming.dev



founded 1 year ago
MODERATORS
 

Got myself a few months ago into the optimization rabbit hole as I had a slow quant finance library to take care of, and for now my most successful optimizations are using local memory allocators (see my C++ post, I also played with mimalloc which helped but custom local memory allocators are even better) and rethinking class layouts in a more "data-oriented" way (mostly going from array-of-structs to struct-of-arrays layouts whenever it's more advantageous to do so, see for example this talk).

What are some of your preferred optimizations that yielded sizeable gains in speed and/or memory usage? I realize that many optimizations aren't necessarily specific to any given language so I'm asking in !programming@programming.dev.

you are viewing a single comment's thread
view the rest of the comments
[–] eeleech@lemm.ee 3 points 1 year ago

I recently spent some time optimizing a small Julia program I wrote that generates a lookup table of brainfuck constants. Because it only needs to run once, I originally didn't care about performance when I originally wrote it (and the optimization was mostly for fun).

I achieved an ~100x improvement by adding types, using static arrays and memoization. In the end, the performance was mostly limited by primitive math operations, I tried using multiple threads, but any synchronization destroyed the performance.

However, the most impressive thing was the ability of Julia to scale from dynamically typed scripting language to almost a compiled language with minimal changes to the code.