this post was submitted on 06 Sep 2023
5 points (100.0% liked)

Machine Learning

4 readers
1 users here now

Machine learning (ML) is a field devoted to understanding and building methods that let machines "learn" โ€“ that is, methods that leverage data to improve computer performance on some set of tasks. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.

founded 1 year ago
 

Multilingual Vision-Language Pre-training (VLP) is a promising but challenging topic due to the lack of large-scale multilingual image-text pairs. Existing works address the problem by translating English data into other languages, which is intuitive and the generated data is usually limited in form and scale. In this paper, we explore a more practical and scalable setting: weakly supervised multilingual VLP with only English image-text pairs and multilingual text corpora. We argue that the universal multilingual representation learned from texts allows the cross-modal interaction learned in English to be transferable to other languages. To this end, we propose a framework to effectively unify cross-lingual and cross-modal pre-training. For unified modeling on different data, we design an architecture with flexible modules to learn different interactions. Moreover, two unified tasks are introduced to efficiently guide the unified cross-lingual cross-modal learning. Extensive experiments demonstrate that our pre-trained model learns universal multilingual multimodal representations, allowing effective cross-lingual transfer on multimodal tasks. Code and models are available at https://github.com/FudanDISC/weakly-supervised-mVLP.

you are viewing a single comment's thread
view the rest of the comments
[โ€“] KingsmanVince@kbin.social 1 points 1 year ago