this post was submitted on 19 Aug 2023
37 points (87.8% liked)
Programming
17366 readers
165 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities !webdev@programming.dev
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It's a shame that sum type support is still so lacking in C++. Proper
Result
types (ala Haskell or Rust) are generally much nicer to deal with, especially in embedded contexts.As is, there's only
std::expected
(which can and will blow up in your face if you forget to checkhas_value
) andstd::variant
, which I have heard nothing but complaints about.I don't think this is a lack of support in C++. There are already a few C++ libraries that implement Either and Result monads. It would be nice if those were supported in the C++ stand library, but that does not stop anyone from adopting them.
I would consider language support essential for "good" sum types. AFAIK, stuff like exhaustive pattern matching can't be accomplished by a library. Perhaps you could do some cursed stuff with compiler plugins, however.
(There was a library that implemented non-exhaustive pattern matching that eventually morphed into an ISO C++ proposal... so we won't see it until 2030 at the earliest /hj)
At a library level, couldn't you have an opaque sum type where the only thing you can do with it is call a
match
method that requires a function pointer for each possible variant of the sum type? It'd be pretty cursed to use but at least it wouldn't require compiler plugins.I'd bet five bucks some desperate Haskeller or Rustacean has implemented exactly that. You could also probably use nested functions for GCC C or lambdas in C++ to move everything inline?