this post was submitted on 02 Aug 2023
151 points (98.7% liked)
Explain Like I'm Five
14243 readers
28 users here now
Simplifying Complexity, One Answer at a Time!
Rules
- Be respectful and inclusive.
- No harassment, hate speech, or trolling.
- Engage in constructive discussions.
- Share relevant content.
- Follow guidelines and moderators' instructions.
- Use appropriate language and tone.
- Report violations.
- Foster a continuous learning environment.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I think it's also very interesting from a 'pure science' background. Superconductivity isn't 'perfect conductivity' - it isn't that we've found ways of making normal resistance less and less until eventually we made it to zero. Instead, there's certain materials that, as the temperature falls / pressure rises, that all of a sudden the resistance just disappears completely. The electrons pair up in a different way from usual, and we see different properties, like completely ejecting all magnetic fields.
They tend to have a 'breakdown current' above which they stop superconducting, so it's not like they're the instant answer to all of our power distribution woes. They could help in places, but they also tend to be amazingly expensive to manufacture, so they're no magic bullet. Their magnetic properties might enable us to make things like rotating hard disks with truly absurd storage capacities - you wouldn't need much superconducting material for each one.
We've had superconductors that operate at liquid-nitrogen temperatures for quite a while, which makes them easy enough to study in a laboratory. Having room-temperature ones makes it even easier, and might let us understand them even better. This one sounds a bit impractical for wide-scale use (it's a powder) but might let us develop more useful ones.