Selfhosted
A place to share alternatives to popular online services that can be self-hosted without giving up privacy or locking you into a service you don't control.
Rules:
-
Be civil: we're here to support and learn from one another. Insults won't be tolerated. Flame wars are frowned upon.
-
No spam posting.
-
Posts have to be centered around self-hosting. There are other communities for discussing hardware or home computing. If it's not obvious why your post topic revolves around selfhosting, please include details to make it clear.
-
Don't duplicate the full text of your blog or github here. Just post the link for folks to click.
-
Submission headline should match the article title (don’t cherry-pick information from the title to fit your agenda).
-
No trolling.
Resources:
- selfh.st Newsletter and index of selfhosted software and apps
- awesome-selfhosted software
- awesome-sysadmin resources
- Self-Hosted Podcast from Jupiter Broadcasting
Any issues on the community? Report it using the report flag.
Questions? DM the mods!
view the rest of the comments
You should ask @brucethemoose@lemmy.world. He seems to know all about this stuff.
@Maroon@lemmy.world The biggest question I have for you is what graphics card, but generally speaking this is... less than ideal.
To answer your question, Open Web UI is the new hotness: https://github.com/open-webui/open-webui
I personally use exui for a lot of my LLM work, but that's because I'm an uber minimalist.
And on your setup, I would host the best model you can on kobold.cpp or the built-in llama.cpp server (just not Ollama) and use Open Web UI as your front end. You can also use llama.cpp to host an embeddings model for RAG, if you wish.
This is a general ranking of the "best" models for document answering and summarization: https://huggingface.co/spaces/vectara/Hallucination-evaluation-leaderboard
...But generally, I prefer to not mess with RAG retrieval and just slap the context I want into the LLM myself, and for this, the performance of your machine is kind of critical (depending on just how much "context" you want it to cover). I know this is !selfhosted, but once you get your setup dialed in, you may consider making calls to an API like Groq, Cerebras or whatever, or even renting a Runpod GPU instance if that's in your time/money budget.
I’m new to this and I was wondering why you don’t recommend ollama? This is the first one I managed to run and it seemed decent but if there are better alternatives I’m interested
Edit: it seems the two others don’t have an API. What would you recommend if you need an API?
Pretty much everything has an API :P
ollama is OK because its easy and automated, but you can get higher performance, better vram efficiency, and better samplers from either kobold.cpp or tabbyAPI, with the catch being that more manual configuration is required. But this is good, as it "forces" you to pick and test an optimal config for your system.
I'd recommend kobold.cpp for very short context (like 6K or less) or if you need to partially offload the model to CPU because your GPU is relatively low VRAM. Use a good IQ quantization (like IQ4_M, for instance).
Otherwise use TabbyAPI with an exl2 quantization, as it's generally faster (but GPU only) and much better at long context through its great k/v cache quantization.
They all have OpenAI APIs, though kobold.cpp also has its own web ui.