this post was submitted on 01 Sep 2024
18 points (87.5% liked)

Space

8687 readers
46 users here now

Share & discuss informative content on: Astrophysics, Cosmology, Space Exploration, Planetary Science and Astrobiology.


Rules

  1. Be respectful and inclusive.
  2. No harassment, hate speech, or trolling.
  3. Engage in constructive discussions.
  4. Share relevant content.
  5. Follow guidelines and moderators' instructions.
  6. Use appropriate language and tone.
  7. Report violations.
  8. Foster a continuous learning environment.

Picture of the Day

The Busy Center of the Lagoon Nebula


Related Communities

๐Ÿ”ญ Science

๐Ÿš€ Engineering

๐ŸŒŒ Art and Photography


Other Cool Links

founded 1 year ago
MODERATORS
 

Hear me out. This thought process requires a bit of knowledge of physics/chemistry.

On the martian poles, there are vast quantities of frozes CO2. This frozen CO2 exerts a certain "vapor pressure" - in other words, a certain partial pressure of gaseous CO2.

Now, if we convert this CO2 into O2 by removing the carbon out of it, the concentration of O2 in the atmosphere increases. And therefore, the concentration (and partial pressure) of CO2 decreases.

But since the frozen CO2 on the poles causes a certain partial pressure of CO2, a bit of the frozen CO2 will go into gaseous phase to refill the CO2 partial pressure.

So, by converting CO2 into O2, the concentration of O2 increases, but the concentration of CO2 stays approximately the same. As such, the total pressure (and density) of the atmosphere increases. This would happen if large-scale biological photosynthesis/growth took place.

you are viewing a single comment's thread
view the rest of the comments
[โ€“] LarmyOfLone@lemm.ee 1 points 1 month ago (6 children)

The wikipedia article mentions the idea of superconducting rings build around mars surface. They could also be used for energy transport. This is basically already possible with current technology.

Maybe it's also possible to somehow extract energy from the solar wind but that is only speculation on my part.

[โ€“] NocturnalMorning@lemmy.world 1 points 1 month ago* (last edited 1 month ago) (5 children)

That is purely science fiction. I'm talking about current technology living on mars.

[โ€“] LarmyOfLone@lemm.ee 0 points 1 month ago (4 children)

Well yeah, then underground in lava tubes. But then the moon would be much easier for building habitats to live in.

There is a sort of paradox. To do any of this in any scale would be much more likely with automation. And automation, like robots being able to build robots and then factories and anything else is coming especially with the recent advances in AI and computer vision etc. And then such megaprojects won't be unthinkeable any more. But then it would probably also be easier to build a mega space habitats mining the moon. Without automation, it might never be worth it to actually colonize there so it's better to wait a few more decades.

[โ€“] nikaaa@lemmy.world 2 points 1 month ago (1 children)

So, the major issue with settling moon is resource availability: water (!), carbon, fertile soil, and energy.

On the moon you have none of that. Maybe, with a lot of luck, you find water somewhere. Then you need carbon, energy during the long moon nights, and soil that isn't razor sharp particles.

On Mars, you have all of them: low concentrations of water in the atmosphere, carbon from carbon dioxide in the atmosphere, soil that isn't razor sharp (thanks to erosion), and the nights are short enough that you can make it through them.

[โ€“] LarmyOfLone@lemm.ee 2 points 1 month ago* (last edited 1 month ago)

True, and you have more gravity. On the other hand you have perchlorides. Obviously you need water but I thought they did find some already near the south pole on the moon? (EDIT: Yes but apparently little and not very concentrated). I didn't know there was so little carbon though.

load more comments (2 replies)
load more comments (2 replies)
load more comments (2 replies)