count_of_monte_carlo

joined 1 year ago
MODERATOR OF
[–] count_of_monte_carlo@lemmy.world 10 points 3 days ago (1 children)

I’ll echo the other replies that the gravitational waves from black hole mergers have been detected by LIGO. In fact, the 2017 Nobel Prize in physics was awarded to members of this collaboration specifically for this feat.

We haven’t (yet) seen a pair of black holes collide using light directly, but the gravitational waves have been perfectly consistent with general relativity calculations. Here’s a video from LIGO that shows what one of these simulations looks like, for a simulation that reproduces a detected gravitational wave.

As an aside, right around the time the LIGO team was awarded the Nobel prize, they detected the collision of a pair of neutron stars. They alerted the astronomy community to the direction they saw the signal from, and within a day there were telescope observations of light from the kilonova that resulted from the collision. Ultimately various sensors recorded optical light, infrared, ultraviolet, gamma rays, and radio waves being emitted from the explosion. The hope is that someday we’ll get lucky enough to see similar photon signatures from a black hole merger!

For physics specifically, a bachelor’s degree probably won’t be enough to get a job in physics.

You might be able to get a job as a technician in a lab, but they typically will look for people with a master’s degree for those roles. With just a bachelor’s , you’d need to get your foot in the door by already having some relevant experience, which is a possibility if you get some research experience in college and pivot that into an internship or something. But it would definitely require effort and luck.

I’m not sure that’s a good comparison. The kill mechanism from a neutron bomb is the deposition of ionizing radiation in the body, but the microwave radiation is non-ionizing.

You’ve gotten some good answers explaining that heat changes the density, and therefore the index of refraction of air.

Fun fact: Schlieren Imaging allows one to photograph shockwaves by relying on the same effect. As a shockwave travels through air, it creates a region of high density, which can be imaged with this technique.

[–] count_of_monte_carlo@lemmy.world 13 points 4 months ago (1 children)

in the photon's frame of reference

There are no valid inertial frames for an object moving at the speed of light. The idea that “a photon doesn’t experience time” is a common, but misleadingly incorrect statement, since we can’t define a reference frame for it. Sometimes this misconception can be useful for conveying some qualitative ideas (photons don’t decay), but often it leads to contradictions like your question about Hawking Radiation for black holes.

Yes, the wavelength of photons will be preserved if they travel through non-expanding space. If the photon is emitted by a source that’s in motion with respect to a detector, there could still be redshift or blueshift from the relativistic Doppler effect. This would only depend on the relative velocity between the emitter and observer, and not on the distance the photon traveled between them.

[–] count_of_monte_carlo@lemmy.world 5 points 4 months ago (1 children)

Unfortunately for me, there is no community at Lemmy dedicated to the history of science

I agree! The history of science is often even more interesting since you get both the science and the personalities of all the people involved, plus the occasional world war in the mix. It’s a shame there isn’t an “askhistorians” type community here.

[–] count_of_monte_carlo@lemmy.world 1 points 4 months ago (3 children)

how people very knowledgeable on the current paradigm cannot see (most of times historicaly) that a paradigm shift is about to happen ?

I’m not sure I’d agree with that assessment. Generally a new model or understanding of physics arises because of known shortcomings in the current model. Quantum physics is the classic example that resolved a number of open problems at the time: the ultraviolet catastrophe in black body radiation, the photoelectric effect, and the interference pattern of the double slit experiment, among others. In the years leading up to the development of quantum theory, it was clear to everyone active in physics that something was missing from the current understanding of Newtonian/classical physics. Obviously it wasn’t clear what the solution was until it came about, but it was obvious that a shift was coming.

The same thing happened again with electroweak unification%20and%20the%20weak%20interaction.) and the standard model of particle physics. There were known problems with the previous standard model Lagrangian, but it took a unique mathematical approach to resolve many of them.

Generally research focuses on things that are unknown or can’t be explained by our current understanding of physics. The review article you linked, for example, details open questions and contradictory observations/predictions in the state of the art.

[–] count_of_monte_carlo@lemmy.world 16 points 4 months ago (1 children)

Haha it’s in the title: “Cosmological Particle Production: A Review”. Also the journal it was published in is for review articles: Reports on Progress in Physics. Mostly though the abstract promises to give a review of the subject.

Another indication is its lengthy (28 pages) with tons of citations throughout. If someone is doing new work, citations will mostly be in the introduction and discussion sections.

[–] count_of_monte_carlo@lemmy.world 10 points 4 months ago (5 children)

So unfortunately the article they reference by Parker is paywalled. I have access but can’t share it easily. The article is essentially the foundation of quantum field theory in curved space time - in other words the genesis of the standard cosmological model. Cosmological particle production in an expanding universe isn’t an alternative to the Big Bang, it’s an essential part of it.

Leonard Parker’s work is summarized on his Wikipedia page. You can also read an interview with him on the arxiv

[–] count_of_monte_carlo@lemmy.world 20 points 4 months ago (3 children)

There isn’t a link in your post, but it looks like you’re referring to this preprint. The article has been published in a peer reviewed journal paywall warning.

This is a review article, so it isn’t proposing anything new and is instead giving a summary of the current state of the field. These sorts of articles are typically written by someone who is deeply familiar with the subject. They’re also super useful if you’re learning about a new area - think of them as a short, relatively up-to-date textbook.

I’m not sure how you’re interpreting this review as an alternative to the standard model of cosmology and the Big Bang. Everything is pretty standard quantum field theory. The only mention of the CMB is in regards to the possibility that gravitons in the early universe would leave detectable signatures (anisotropies and polarization). They aren’t proposing an alternative production mechanism for the CMB.

This falls a bit outside my wheelhouse but I believe the answer is no. The established symmetries in particle physics are all associated with the quantum mechanical state of a particle (charge, parity, etc) and to my knowledge there isn’t an “information” quantum number.

The closest you might get to this is quantum information theory, where information is encoded in other physical characteristics (spin, parity, energy, etc). In this sense information is more of an emergent phenomenon than a fundamental property.

view more: next ›