this post was submitted on 01 Nov 2024
188 points (99.5% liked)
Videos
14323 readers
145 users here now
For sharing interesting videos from around the Web!
Rules
- Videos only
- Follow the global Mastodon.World rules and the Lemmy.World TOS while posting and commenting.
- Don't be a jerk
- No advertising
- No political videos, post those to !politicalvideos@lemmy.world instead.
- Avoid clickbait titles. (Tip: Use dearrow)
- Link directly to the video source and not for example an embedded video in an article or tracked sharing link.
- Duplicate posts may be removed
Note: bans may apply to both !videos@lemmy.world and !politicalvideos@lemmy.world
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Watching TC do a video about something I do professionally has been a bit of a trip. For context, I work with freeze dryers (we call them lyophilizers) in pharmaceuticals rather than foods. I help design the lyophilization cycles for biologics and gene therapy products that get preserved through freeze drying. Until this video, I had no idea that people used these instruments for at-home food preservation (which is kind of insane imo).
The instruments that I work with are typically a much larger version of the bench-scale machine that he is using (usually one of the LyoStar line). However, I have used smaller, bench-scale units as well for some quick and dirty work. I included some pictures at the end behind a spoiler tag. Happy to answer any questions people have.
Some differences in how I use lyophilizers in a scientific setting as opposed to a home-use food setting:
::: spoiler Some Pictures Benchtop lyophilizer that I have experience using. You can see some vials lined up inside the door. I have never used the bottle connections hanging off the side:
One of the trays of vials that is loaded before going into the lyophilizer. The vials that are partially stoppered in the middle of the tray actually contain the drug. All the vials without stoppers are empty and simply there to help hold things in place as well as distribute heat predictably through the tray. The stoppered vials in the corners are there to help distribute the weight as the shelves compress to fully seat the stoppers.
Here are a small number of vials that I ran on a benchtop unit without any spacer vials or the tray. I would never do this for any reason other than to take a picture like this. This is a good view of what a partially stoppered vial looks like. It allows a path for water vapor to escape out the top of the vial.
Finally, here is a vial post-lyophilization. The liquid has turned into a solid, white cake at the bottom of the vial. This is because most lyophilization formulations include sugars that provide structure for the cake and keep it porous. The sugars provide protection against freeze/thaw stress for the molecule of interest as well. The porosity of the cake allows for quick and easy reconstitution by adding water, usually in <30 seconds or so.
What an interesting read. You made my day!
What are thaw things you process used for?
The products I work on are mostly monoclonal antibodies (and the occasional gene therapy product mixed in). So, the types of diseases they are used to treat vary. To be honest, I work on the process/formulation side of the development pipleline and the actual clinical treatment part is pretty much inconsequential to what I do. Some of the past programs I have worked on include treatments for asthma, eczema, multiple myeloma, breast cancer, MS, hemophilia, and tons of others that I don't remember. Often, when dealing with antibodies, the same medicine can be effective for multiple indications.
The finished vials, post-lyophilization, sealing, labeling, and packaging, are sent to infusion clinics. There, clinicians will add water to the vials to reconstitute the drugs and then administer them to patients via IV (usually).
I’ve reconstituted a ton of lyophilized vials of controls for medical lab analyzers. Interesting to hear about how they’re made, thanks for sharing.